Chez IVADO, nous soutenons ce programme de recherche à hauteur de 1.2 M$ dans le cadre de notre programme de financement de recherche stratégique lancé en 2021. Nous vous invitons à consulter la page principale du programme pour consulter ses objectifs et mieux comprendre le processus ayant permis de soutenir ce projet.
Description du programme
Les changements climatiques modifient la biodiversité végétale, ce qui pourrait entraîner des conséquences potentiellement catastrophiques sur la résilience et le fonctionnement des écosystèmes terrestres. Une source majeure d’incertitude dans le bilan de carbone terrestre mondial, et donc pour les projections climatiques futures, est la façon dont les espèces végétales diffèrent dans leurs réponses phénologiques aux fluctuations climatiques saisonnières. Les changements climatiques modifient aussi la répartition des espèces végétales dans des paysages entiers, mais nous ne sommes pas en mesure de suivre ces changements de biodiversité à l’aide d’un échantillonnage classique sur le terrain. Les technologies de télédétection, telles que les phénocams ou les drones, offrent la possibilité d’étudier la phénologie et la biodiversité des plantes de manière très détaillée à diverses échelles spatiales. Ces nouvelles approches pourraient révolutionner la science et la conservation de la biodiversité et contribuer à orienter la conception de solutions fondées sur la nature et essentielles pour atténuer les effets des changements climatiques. De nouveaux algorithmes d’IA sont nécessaires pour exploiter tout le potentiel de ces technologies transformatrices et ses liens avec des flux de données et des produits plus courants. Ce programme permettra de concevoir ces nouveaux algorithmes en nous appuyant sur les plus récents développements en matière de vision par ordinateur et de méta-apprentissage pour cartographier les espèces végétales et leurs signatures phénologiques. Les algorithmes seront mis directement entre les mains d’utilisateurs finaux scientifiques et non scientifiques grâce à la conception d’une plateforme d’apprentissage actif. Cette recherche en IA permettra aux chercheurs et aux professionnels en exercice de transformer les images en données exploitables sur la biodiversité et la phénologie des plantes, ce qui leur fournira des outils pour contribuer à la lutte contre la perte de biodiversité et les effets des changements climatiques.
Chercheurs principaux et chercheuse principale
Liens utiles
Les ressources en lien avec ce programme apparaîtront ici.
Revue de presse
- Article publié par La Presse le 28 août 2022
- Article publié par Polytechnique Montréal le 17 décembre 2021
- Présence de l’équipe dans le documentaire Comment ça va le Nord?