Chez IVADO, nous soutenons ce programme de recherche à hauteur de 1.2 M$ dans le cadre de notre programme de financement de recherche stratégique lancé en 2021. Nous vous invitons à consulter la page principale du programme pour consulter ses objectifs et mieux comprendre le processus ayant permis de soutenir ce projet.

 

Description du programme

Toute décision implique une certaine forme d’incertitude. C’est certainement le cas dans les chaînes d’approvisionnement où la forte variabilité de la demande, des coûts et des déplacements complique considérablement la planification de l’approvisionnement, la production, la distribution et du service. Dans un contexte en constante évolution où la fréquence des données est élevée, les paradigmes classiques s’appuyant sur l’entraînement de modèles, leur validation, suivi par l’optimisation des décisions ne suffisent plus. Ce programme développe de nouvelles méthodes pour exploiter de manière plus efficace et adaptative les données dans la prise de décision. Il est fondé sur des perspectives modernes en optimisation et en apprentissage automatique, incluant l’apprentissage profond par renforcement/de bout-en-bout, les mesures de risque et l’optimisation contextuelle/robuste aux distributions. Sa mission est triple : (i) développer la prochaine génération de méthodes pour gérer l’incertitude dans les modèles d’optimisation axés sur les données en intégrant l’apprentissage automatique; (ii) identifier des opportunités scientifiques pour améliorer la robustesse des chaînes d’approvisionnement ; et (iii) stimuler l’intégration de modèles d’optimisation stochastique chez nos partenaires tout en définissant des cas d’application qui guideront les futures avancées méthodologiques. En somme, ce programme vise un cercle vertueux de découvertes qui sont à la fois alimentées et transformatrices pour un secteur important de l’économie canadienne.

Chercheurs principaux et chercheuse principale

Erick Delage

Professeur Titulaire

HEC Montréal, GERAD

Yossiri Adulyasak

Professeur agrégé

HEC Montréal, GERAD

Emma Frejinger

Professeure agrégée

Université de Montréal, CIRRELT

Liens utiles

Les ressources en lien avec ce programme apparaîtront ici.

Revue de presse

Les articles et entrevues en lien avec ce programme apparaîtront ici.

Appel de propositions de projets postdoctoraux

Domaine de recherche : Apprentissage automatique et optimisation intégrés pour la prise de décision en incertitude

Type de recherche : fondamentale ou appliquée

Type de programme : financement de chercheur.se.s postdoctor.aux.ales dans des équipes de recherche

Champs prioritaires : optimisation guidée par les données, optimisation contextuelle, programmation stochastique, optimisation robuste, applications aux chaînes d’approvisionnement

$35,000 pour une année seront accordés aux projets sélectionnés pour financer une partie des activités d’un.e chercheur.se postdoctoral.e dans une équipe de recherche. Des fonds sont disponibles pour un maximum de quatre projets. Les projets pourront soumettre une demande de renouvellement après la première année.

Clôture des soumissions : 31 mai 2022, 9h00 du matin, HAE.

Voir tous les détails de cet appel dans ce DOCUMENT PDF.

NB : Une SESSION SPÉCIALE des JOURNÉES DE L’OPTIMISATION 2022 (HEC Montréal, 16-18 mai 2022) sera consacrée à la présentation et à la discussion de cet appel de projets et du programme de recherche structurant de IVADO sur l’apprentissage automatique et l’optimisation intégrés pour la prise de décision en incertitude.

Contact

Nous vous encourageons à nous contacter pour toute information complémentaire ou question en lien avec ce programme. Veuillez utiliser ce courriel et nous vous répondrons dans les meilleurs délais.